Minggu, 16 Maret 2008

fisika statitistik

SUPERKONDUKTOR
Superkonduktor adalah suatu material yang tidak memiliki hambatan di bawah suatu nilai suhu tertentu. Suatu superkonduktor dapat saja berupa suatu konduktor, semikonduktor, ataupun suatu insulator pada keadaan ruang. Suhu di mana terjadi perubahan sifat konduktivitas menjadi superkonduktor disebut dengan temperatur kritis (Tc).
Dalam beberapa superkonduktor, pasangan elektron bergerak sebagai pasangan Cooper dimana gerak mereka digandeng menuju maeri dekat melalui vibrasi kisi disebut fonon. Jarak pemisah antara pasangan-pasangan Cooper adalah sekitar 100 nm. Benda memiliki muatan listrik ketika benda memiliki lebih banyak atau lebih sedikit elektron ketimbang yang diperlukan untuk menyeimbangkan muatan positip inti atom.
Ketika terdapat kelebihan elektron, objek disebut bermuatan negatip. Ketika terdapat lebih sedikit elektron dibanding proton, objek disebut bermuatan positip. Ketika jumlah elektron dan jumlah proton sama, muatan-muatan mereka membatalkan satu sama lain dan objek disebut secara kelistrikan netral. Benda makroskopik dapat menambah muatan listrik melalui penggosokan, oleh fenomena triboelektrik.
Ketika elektron dan positron bertumbukan, mereka saling menghilangkan satu sama lain dan menghasilkan pasangan foton energi tinggi atau partikel lain. Pada sisi lain, foton energi tinggi dapat mentransformasi menjadi elektron dan positron dengan proses yang disebut produksi pasangan, namun hanya dalam keberadaan partikel bermuatan terdekat, semisal inti atom.
Elektron sekarang ini dideskripsikan sebagai partikel fundamental atau partikel elementer. Ia tak memiliki struktur. Oleh karena itu, untuk kesesuaian, ia biasanya didefinisikan atau diasumsikan muatan titik matematis seperti partikel, dengan tak ada perluasan ruang.
Namun, ketika partikel uji dipaksa untuk mendekati elektron, kita mengukur perubahan-perubahan dalam sifat-sifatnya (muatan dan massa). Efek ini adalah umum untuk seluruh partikel elementer: teori sekarang menyarankan bahwa efek ini dikarenakan pengaruh fluktuasi vakum dalam ruang lokalnya, sehingga sifat-sifat terukur dari jarak signifikan ditinjau menjadi penjumlahan sifat-sifat polos dan efek vakum (lihat renormalisasi).
Jari-jari elektron klasik adalah 2.8179 × 10-15 m. Ini adalah jari-jari yang diduga/disimpulkan dari muatan listrik elektron, dengan menggunakan teori klasik elektrodinamika saja, dengan mengabaikan mekanika kuantum. Elektrodinamika klasik (elektrodinamika Maxwell) adalah konsep yang lebih tua yang secara luas digunakan untuk penerapan praktis kelistrikan, teknik elektro, fisika semikonduktor dan elektromagnetika; elektrodinamika kuantum, pada sisi lain, berguna untuk penerapan mencangkup fisika partikel modern dan beberapa aspek fisika optik, laser dan kuantum.
Berbasis teori sekarang, kecepatan elektron dapat mendekati, namun tak pernah mencapai, c (kecepatan cahaya dalam vakum). Pembatasan ini diatributkan ke teori relativitas khusus Einstein yang mendefinisikan kecepatan cahaya sebagai suatu konstanta dalam seluruh kerangka inersia.
Namun, ketika elektron relatistik diinjeksikan ke medium dielektrik, semisal air, dimana kecepatan lokal cahaya secara signifikan kurang dari c, elektron akan (secara temporer) berjalan lebih cepat dibanding cahaya dalam medium. Sebagaimana mereka berinteraksi dengan medium, mereka membangkitkan cahaya pucat kebiru-biruan, disebut radiasi Cherenkov. Efek relativitas khusus didasarkan pada kuantitas yang dikenal sebagai γ atau faktor Lorentz. γ adalah fungsi dari v, kecepatan partikel.
Untuk contoh, pemercepat partikel SLAC dapat mempercepat elektron hingga 51 GeV. Ini memberi gamma 100.000, karena massa diam elektron adalah 0.51 MeV/c2 (massa relativistik elektron ini adalah 100.000 kali massa diamnya).
Dalam mekanika kuantum relativistik, elektron dideskripsikan oleh persamaan Dirac yang mendefinisikan elektron sebagai titik matematis. Dalam teori medan kuantum, perilaku elektron dideskripsikan oleh elektrodinamika kuantum, sebuah teori gauge U(1). Dalam model Dirac, elektron didefinisikan menjadi titik matematis, seperti titik, partikel “polos” bermuatan yang dikelilingi oleh lautan pasangan interaksi partikel virtual dan antipartikel.
Hal ini memberikan koreksi sedikit di atas 0,1% terhadap nilai yang diprediksi rasio gyromagnetik elektron dari dengan pasti 2 (sebagaimana diprediksi oleh model partikel tunggal Dirac). Kesesuaian yang luar biasa presisi dari prediksi ini dengan nilai yang ditentukan secara eksperimen dipandang sebagai salah satu prestasi besar fisika modern.
Dalam Model Standar fisika partikel, elektron adalah generasi pertama lepton bermuatan. Ia membentuk doublet isospin lemah dengan neutrino elektron; dua partikel ini berinteraksi dengan satu sama lain melalui kedua muatan dan arus netral interaksi lemah. Elektron adalah sangat mirip dengan lebih dari dua partikel masif generasi lebih tinggi, muon dan tau lepton, yang adalah identik dalam muatan, spin dan interaksi namun berbeda dalam massa.
Bagian anti materi elektron adalah positron. Positron memiliki jumlah muatan listrik yang sama dengan elektron, kecuali muatannya adalah positip. Ia memiliki massa dan spin yang sama dengan elektron. Ketika elektron dan positron bertemu, mereka saling menghilangkan satu sama lain, memunculkan dua foton sinar gamma diemisikan secara kasar 1800 satu sama lain.
Jika elektron dan positron memiliki momentum yang dapat diabaikan, tiap-tiap sinar gamma akan memiliki energi 0.511 MeV. Elektron adalah elemen kunci dalam elektromagnetisme, sebuah teori yang akurat untuk sistem makroskopik, dan untuk model klasik sistem mikroskopik.
Superkonduktivitas suatu bahan bukanlah hal yang baru. Sifat ini diamati untuk yang pertama kalinya pada tahun 1911 oleh fisikawan Belanda H.K. Onnes, yaitu ketika ia menemukan bahwa air raksa murni yang didinginkan dengan helium cair ( suhu 4,2 K ) kehilangan seluruh resistansi listriknya. Sejak itu harapan untuk menciptakan alat-alat listrik yang ekonomis terbuka lebar-lebar. Bayangkan, dengan resistansinya yang nol itu superkonduktor dapat menghantarkan arus listrik tanpa kehilangan daya sedikitpun, kawat superkonduktor tidak akan menjadi panas dengan lewatnya arus listrik. Kendala terbesar yang masih menghadang terapan superkonduktor dalam peralatan praktis sehari-hari adalah bahwa superkonduktivitas bahan barulah muncul pada suhu yang amat rendah, jauh di bawah 0 °C! Dengan demikian niat penghematan pemakaian daya listrik masih harus bersaing dengan biaya pendinginan yang harus dilakukan. Oleh sebab itulah para ahli sampai sekarang terus berlomba-lomba menemukan bahan superkonduktor yang dapat beroperasi pada suhu tinggi, kalau bisa ya pada suhu kamar.
SUHU KRITIK
Perubahan sifat bahan dari keadaan normal ke keadaan superkonduktor dapat dianalogikan misalnya dengan perubahan fase air dari keadaan cair ke keadaan padat. Perubahan watak seperti ini sama-sama mempunyai suatu suhu transisis, pada transisi superkonduktor suhu ini disebut sebagai suhu kritik Tc, pada transisi fase ada yang disebut titik didih (dari fase cair ke gas) dan titik beku (dari fase cair ke padat). Pada transisi feromagnetik suhu transisinya disebut suhu Curie. Besaran fisis yang berkaitan dengan transisi superkonduktor adalah resistivitas bahan, mari kita lihat grafik resistivitas sebagai fungsi suhu mutlak pada gambar 1.


Pada suhu T > Tc bahan dikatakan berada dalam keadaan normal, ia memiliki resistansi listrik. Transisi ke keadaan normal ini bukan selalu berarti menjadi konduktor biasa yang baik, pada umumnya malah menjadi penghantar yang jelek, bahkan ada yang ekstrim menjadi isolator! Untuk suhu T < Tc bahan berada dalam keadaan superkonduktor. Di dalam eksperimen, pengukuran resistivitasnya dilakukan dengan menginduksi suatu sampel bahan berbentuk cincin, ternyata arus listrik yang terjadi dapat bertahan sampai bertahun-tahun. Resistivitasnya yang terukur tidak akan melebihi 10-25 ohm.meter, sehingga cukup beralasan bila resistivitasnya dikatakan sama dengan nol.

Tipe Superkonduktor
Teori pertama yang mencoba menjelaskan gejala superkonduktivitas adalah teori BCS (Bardeen, Cooper, dan Schrieffer). Mereka bertiga dianugerahi Nobel Fisika tahun 1972. Ketiga ilmuwan ini menjelaskan gejala superkonduktivitas dengan pasangan elektron (yang sering disebut pasangan Cooper).
Pasangan elektron bergerak sepanjang terowongan penarik yang dibentuk ion-ion logam yang bermuatan positif. Akibat dari adanya pembentukan pasangan dan tarikan ini arus listrik akan bergerak dengan merata dan superkonduktivitas akan terjadi. Superkonduktor yang berkelakuan seperti ini disebut superkonduktor jenis pertama yang secara fisik ditandai dengan efek Meissner, yakni gejala penolakan medan magnet luar (asalkan kuat medannya tidak terlalu tinggi) oleh superkonduktor. Bila kuat medannya melebihi batas kritis, gejala superkonduktivitasnya akan menghilang.
Selain superkonduktror jenis I, ada bahan superkonduktor yang tidak memperlihatkan efek Meissner. Superkonduktor seperti ini disebut superkonduktor jenis II. Perilaku fisik kedua superkonduktor dalam medan magnet diperlihatkan pada gambar



Percobaan menunjukkan bahwa sifat superkonduktor jenis II tidak dapat dijelaskan dengan teori BCS. Abrisokov berhasil memformulasikan teori baru untuk menjelaskan superkonduktor jenis II ini. Ia mendasarkan teorinya pada kerapatan pasangan elektron yang dinyatakan dalam parameter keteraturan fungsi gelombang. Abrisokov dapat menunjukkan bahwa parameter tersebut dapat mendeskripsikan pusaran (vortices) dan bagaimana medan magnet dapat memenetrasi bahan sepanjang terowongan dalam pusaran-pusaran ini.
Lebih lanjut ia pun dengan secara mendetail dapat memprediksikan jumlah pusaran yang tumbuh seiring meningkatnya medan magnet. Teori ini merupakan terobosan dan masih digunakan dalam pengembangan dan analisis superkonduktor dan magnet.
Teori Abrisokov didasarkan atas teori yang diformulasikan oleh Ginzburg dan Landau, yang bertujuan untuk mendeskripsikan superkonduktivitas dan kuat medan magnet kritis. Pengetahuan tentang superkonduktor telah membuat berbagai revolusi dalam kehidupan, aplikasi yang populer antara lain dalam MRI (Nobel Kedokteran 2003) dan maglev (kereta super cepat).

Perkembangan bahan superkonduktor sejak pertama kali ditemukan sampai sekarang dapat diikuti pada tabel di bawah ini.


Superkonduktor terdiri dari unsur-unsur tunggal yang dipelopori oleh temuan Onnes, disebut superkonduktor tipe I atau superkonduktor konvensional, ada kira-kira 27 jenis dari tipe ini. Suatu hal yang menarik, bahwa unsur-unsur yang pada suhu kamar merupakan konduktor banyak diantara mereka yang tidak memiliki sifat superkonduktor pada suhu rendah, contohnya tembaga, perak dan golongan alkali. Pada tahun 1960-an ditemukan superkonduktor tipe II, yang berupa kombinasi unsur molybdenum (Mo), niobium (Nb), timah (Sn), vanadium (V), germanium (Ge), indium (In) atau galium (Ga). Sebagian merupakan senyawa, sebagian lagi merupakan larutan padatan. Sifatnya agak berbeda dengan tipe I karena suhu kritiknya relatif lebih tinggi, sehingga tipe II ini sering disebut superkonduktor yang alot. Semua alat yang telah menerapkan superkonduktor dewasa ini menggunakan bahan tipe II ini, alasannya akan menjadi jelas kemudian. Pada tahun 1985 di laboratorium riset IBM di Zurich, A.Muller dan G.Bednorz memulai era baru bagi ilmu bahan superkonduktor. Mereka menemukan bahwa senyawa keramik tembaga oksida dapat memiliki sifat superkonduktor pada suhu yang relatif tinggi, rekor suhu kritik yang saat ini sudah mencapai 125 K juga dipegang oleh golongan ini. Perkembangan selanjutnya tampak agak seret, para ahli sendiri masih meributkan ada tidaknya batas suhu kritik yang mungkin dicapai. Ahli riset di Institut Teknologi California meramalkan bahwa suhu kritik superkonduktivitas tidak akan pernah melampaui 250 K, jadi masih cukup jauh di bawah suhu kamar. Apakah benar demikian, kita tunggu saja hasil-hasil penelitian berikutnya.


EFEK MEISSNER
Sifat kemagnetan superkonduktor diamati oleh Meissner dan Ochsenfeld pada tahun 1933, ternyata superkonduktor berkelakuan seperti bahan diamagnetik sempurna, menolak medan magnet sehingga dapat mengambang di atas sebuah magnet tetap.
Jadi kerentanan magnetnya (susceptibility) = -1, bandingkan dengan konduktor biasa yang = -10-5. Fenomena ini disebut efek Meissner yang tersohor itu. Jadi satu keunggulan lagi bagi superkonduktor terhadap konduktor biasa. tidak saja menjadi perisai terhadap medan listrik, tapi juga terhadap medan magnet, artinya medan listik dan magnet sama dengan nol di dalam bahan superkonduktor. Tetapi pada tahun 1935 London bersaudara melalui penelitian sifat elektrodinamik superkonduktor mendapatkan bahwa intensitas medan magnet masih dapat menembus bahan superkonduktor walaupun hanya sebatas permukaan saja, ordenya hanya beberapa ratus angstrom. Sifat rembesan ini dinyatakan oleh parameter yang disebut kedalaman rembesan London. Medan magnet ternyata berkurang secara eksponensial terhadap kedalaman sesuai dengannya.

Bo adalah medan di luar dan x adalah kedalamannya. membesar dengan naiknya suhu, di Tc harga tak berhingga besar, sehingga medan magnet mampu menerobos ke seluruh bagian bahan tersebut atau dengan perkataan lain sifat superkonduktor telah hilang digantikan dengan keadaan normalnya. Teori London ini juga memberikan kesimpulan bahwa dalam bahan supekonduktor arus listrik akan mengalir di bagian permukaannya saja. Hal ini berbeda dengan arus listrik dalam konduktor biasa yang mengalir secara merata di seluruh bagian konduktor. Perbandingan sifat magnetik pada keadaan normal, superkonduktor tipe I dan tipe II adalah seperti pada gambar 3.



Pada tipe II terdapat daerah peralihan yaitu antara Hcl dan Hc , pada saat itu struktur bahan terjadi dari daerah normal yang berupa silinder-silinder kecil, disebut fluksoid karena bisa diterobos fluks magnet, yang dikelilingi sepenuhnya oleh daerah superkonduktor.

TEORI BCS
Teori tentang superkonduktor yang lebih terinci melibatkan mekanika kuantum yang dalam, diajukan oleh Barden, Cooper dan Schrieffer pada tahun 1975 dikenal sebagai teori BCS yang akhirnya memenangkan hadiah Nobel pada tahun 1972. Dalam teori ini dikatakan bahwa elektron-elektron dalam superkonduktor selalu dalam keadaan berpasang-pasangan dan seluruhnya berada dalam keadaan kuantum yang sama, pasangan-pasangan ini disebut pasangan Cooper. Kita bandingkan dengan elektron konduksi dalam konduktor biasa. Di sini elektron bergerak sendiri-sendiri dan akan kehilangan sebagian energinya jika ia terhambur oleh kotoran (impurities) atau oleh phonon, phonon adalah kuantum energi getaran kerangka (lattice) kristal bahan. Elektron tersebut akan menimbulkan distorsi terhadap kerangka kristal sehingga menimbulkan daerah tarikan. Tarikan ini dalam superkonduktor pada suhu rendah bisa mengalahkan tolakan Coulomb antar elektron, sehingga dengan tukar menukar phonon dua elektron akan membentuk ikatan menjadi pasangan Cooper. Oleh karena keadaan kuantum semuanya sama, suatu elektron tidak dapat terhambur tanpa mengganggu pasangannya, padahal pada suhu T < Tc getaran kerangka tidak memiliki cukup energi untuk memisahkan ikatan pasangan tersebut. Akibatnya tahan terhadap hamburan, jadilah bahan tersebut superkonduktor.

SUPERKONDUKTOR KERAMIK
Bahan superkonduktor suhu tinggi yang memiliki bahan dasar keramik secara teoritis belum dapat dijelaskan tuntas sehingga tidak bisa digolongkan ke dalam tipe I maupun II karena ada beberapa sifatnya yang unik. Bentuk kristalnya termasuk golongan perovskite, suatu bentuk kristal kubus yang cukup populer. Rumus umum molekul perovskite adalah ABX3 , dimana A dan B adalah kaiton logam dan X adalah anion non logam. Banyak bahan elektronis yang memiliki bentuk perovskite ini, misalnya PbTiO3 dan PbZrO3 yang bersifat piezoelektrik kuat sehingga baik digunakan untuk pressure-gauge. Superkonduktor suhu tinggi ini ternyata berupa perovskite yang cacat. Misalnya YBCO yang ditemukan oleh Chu Chingwu cs. dari Universitas Houston berbentuk 3 kubus perovskite dengan rumus molekul YBa2Cu3O6,5 , yang menunjukkan defisiensi atom oksigen sebagai anionnya (mestinya ada 9 atom). Nama lain untuk YBCO ini adalah 1-2-3, menunjukkan perbandingan cacah atom Y, Ba dan Cu di dalam kristalnya. Atom-atom tembaga terletak pada suatu lapisan inilah arus listrik lewat dalam bahan YBCO. Struktur yang demikian memiliki andil yang besar bagi sifat superkonduktivitas suhu tinggi, terbukti senyawa barium-kalium-bismuth-oksida buatan AT & T Bell Laboratoies (1988) cuma memiliki Tc = 30 K, senyawa ini tentu saja tidak memiliki atom tembaga sebagai lapisan penghantar elektron. Elektron-elektron juga dalam keadaan berpasangan, hal ini telah dibuktikan dengan ditemukannya flukson yang merembes di dalamnya. Flukson adalah kuantum fluks magnetik dalam superkonduktor, besarnya kira-kira 2 x 10-15 weber, dalam perhitungan besarnya bersesuaian dengan kehadiran partikel bermuatan listrik dua kali muatan elektron. Sifat-sifatnya masih perlu penjelasan teoritis adalah tarikan antar elektron dalam pasangan Cooper yang ternyata masih cukup kuat walaupun suhu transisinya tinggi. Padahal suhu yang tinggi menyebabkan bertambahnya cacah phonon, sehingga ikatan elektron itu seharusnya akan hancur karenanya. dalam kaitan ini peranan kerangka kristal harus kembali dipertanyakan. Mungkin saja kotoran di dalamnya yang justru mampu meredam interaksi phonon atau gangguan-gangguan lain termasuk medan magnet yang besar agar ia tetap stabil sebagai superkonduktor.
Sifat lain yang tidak menguntungkan dari YBCO adalah mudahnya ia melepaskan oksigen ke lingkungannya, padahal dengan berkurangnya atom oksigen sifat superkonduktornya akan hilang. Lagi pula ia terlalu rapuh untuk dibentuk menjadi kawat.
Lebih jauh lagi Philip W. Anderson (pemenang hadiah Nobel 1977 bidang Fisika) mengemukakan peranan besaran spin dalam fenomena superkonduktor suhu tinggi ini, pernyataan ini telah didukung oleh data percobaan MIT oleh RJ Birgeneau. Sungguh merupakan sebuah tantangan besar bagi para ahli dari berbagai bidang untuk memahami lebih jauh fenomena superkonduktor jenis baru ini. Tampaknya bahan ini akan semakin merajai teknologi pada masa yang akan datang, yaitu abad XXI.